Saturday 1 July 2017

Resposta Frequência Filtro Média Móvel Exponencial


Resposta de Freqüência do Filtro de Média Corrente A resposta de freqüência de um sistema LTI é a DTFT da resposta de impulso, A resposta de impulso de uma média móvel de L é de média móvel. Uma vez que o filtro de média móvel é FIR, a resposta de freqüência reduz-se à soma finita We Pode usar a identidade muito útil para escrever a resposta de freqüência como onde temos deixar ae menos jomega. N 0 e M L menos 1. Podemos estar interessados ​​na magnitude desta função para determinar quais freqüências passam pelo filtro sem atenuação e quais são atenuadas. Abaixo está um gráfico da magnitude desta função para L 4 (vermelho), 8 (verde) e 16 (azul). O eixo horizontal varia de zero a pi radianos por amostra. Observe que, em todos os três casos, a resposta de freqüência tem uma característica de passagem baixa. Uma componente constante (frequência zero) na entrada passa através do filtro sem ser atenuada. Determinadas frequências mais elevadas, tais como pi 2, são completamente eliminadas pelo filtro. No entanto, se a intenção era projetar um filtro lowpass, então não temos feito muito bem. Algumas das freqüências mais altas são atenuadas apenas por um fator de cerca de 110 (para a média móvel de 16 pontos) ou 13 (para a média móvel de quatro pontos). Podemos fazer muito melhor do que isso. O gráfico acima foi criado pelo seguinte código Matlab: omega 0: pi400: pi H4 (14) (1-exp (-iomega4)) (1-exp (-iomega)) H8 (18) (1-exp (- (1-exp (-iomega)) (1-exp (-iomega)) traço (omega, abs (H4) abs (H8) abs H16)) eixo (0, pi, 0, 1) Copyright cópia 2000 - Universidade da Califórnia, BerkeleyI precisa projetar um filtro de média móvel que tem uma freqüência de corte de 7,8 Hz. Eu usei filtros de média móvel antes, mas até onde eu estou ciente, o único parâmetro que pode ser alimentado é o número de pontos a serem calculados. Como isso pode se relacionar com uma freqüência de corte O inverso de 7,8 Hz é de 130 ms, e Im trabalhando com dados que são amostrados a 1000 Hz. Isso implica que eu deveria estar usando um tamanho de janela de filtro média móvel de 130 amostras, ou há algo mais que estou faltando aqui pediu Jul 18 13 at 9:52 O filtro de média móvel é o filtro usado no domínio do tempo para remover O ruído adicionado e também para o propósito de suavização, mas se você usar o mesmo filtro de média móvel no domínio da freqüência para a separação de freqüência, o desempenho será pior. Então, nesse caso, use filtros de domínio de freqüência O filtro de média móvel (por vezes conhecido coloquialmente como um filtro de caixa) tem uma resposta de impulso retangular: Ou, declarado de forma diferente: Lembrando que uma resposta em freqüência de sistemas de tempo discreto É igual à transformada de Fourier de tempo discreto da sua resposta de impulso, podemos calculá-la da seguinte forma: O que mais interessou para o seu caso é a resposta de magnitude do filtro, H (ômega). Usando algumas manipulações simples, podemos obter isso em uma forma mais fácil de compreender: Isso pode não parecer mais fácil de entender. No entanto, devido à identidade Eulers. Lembre-se que: Portanto, podemos escrever o acima como: Como eu disse antes, o que você está realmente preocupado com a magnitude da resposta de freqüência. Assim, podemos tomar a magnitude do acima para simplificá-lo ainda mais: Nota: Nós somos capazes de soltar os termos exponenciais, porque eles não afetam a magnitude do resultado e 1 para todos os valores de ômega. Como xy xy para quaisquer dois números finitos x e y, podemos concluir que a presença dos termos exponenciais não afeta a resposta da magnitude global (em vez disso, eles afetam a resposta da fase do sistema). A função resultante dentro dos parênteses de magnitude é uma forma de um kernel de Dirichlet. É chamado às vezes uma função periódica de sinc, porque se assemelha à função do sinc um tanto na aparência, mas é periódica preferivelmente. De qualquer forma, uma vez que a definição de freqüência de corte é um pouco underspecified (-3 dB ponto -6 dB ponto primeiro sidelobe nulo), você pode usar a equação acima para resolver o que você precisa. Especificamente, você pode fazer o seguinte: Definir H (omega) para o valor correspondente à resposta do filtro que você deseja na freqüência de corte. Defina ômega igual à freqüência de corte. Para mapear uma freqüência de tempo contínuo para o domínio de tempo discreto, lembre-se que omega 2pi frac, onde fs é sua taxa de amostragem. Encontre o valor de N que lhe dá o melhor acordo entre os lados esquerdo e direito da equação. Isso deve ser o comprimento de sua média móvel. Se N é o comprimento da média móvel, então uma frequência de corte aproximada F (válida para N gt 2) na frequência normalizada Fffs é: O inverso disso é Esta fórmula é assintoticamente correta para N grande e tem cerca de 2 erro Para N2, e menos de 0,5 para N4. P. S. Depois de dois anos, aqui finalmente qual foi a abordagem seguida. O resultado foi baseado na aproximação do espectro de amplitude da MA em torno de f0 como uma parábola (série de 2ª ordem) de acordo com MA (Omega) aproximadamente 1 (frac-fra) Omega2 que pode ser feita mais exata perto do cruzamento zero de MA (Omega) Frac por multiplicação de Omega por um coeficiente de obtenção de MA (Omega) aprox. 10.907523 (frac - frac) Omega2 A solução de MA (Omega) - frac 0 dá os resultados acima, onde 2pi F Omega. Tudo o que acima se refere à freqüência de corte -3dB, o sujeito deste post. Às vezes, porém, é interessante obter um perfil de atenuação em banda de parada que é comparável ao de um filtro passa-baixo IIR de 1ª ordem (LPF de um pólo) com uma determinada freqüência de corte -3dB (tal LPF é também chamado integrador com vazamento, Tendo um pólo não exatamente em DC, mas próximo a ele). De facto, tanto a MA como a Ia ordem IIR LPF têm uma inclinação de 20dBdecade na banda de paragem (é necessário um N maior do que o utilizado na figura, N32, para ver isto), mas enquanto MA tem nulos espectricos em FkN e um 1f evelope, o filtro IIR só tem um perfil 1f. Se se deseja obter um filtro MA com capacidades semelhantes de filtragem de ruído como este filtro IIR, e corresponder às frequências de corte 3dB para ser o mesmo, ao comparar os dois espectros, ele perceberá que a ondulação da banda de parada do filtro MA acaba 3dB abaixo do filtro IIR. Para obter a mesma ondulação de banda de parada (ou seja, a mesma atenuação de potência de ruído) como o filtro IIR as fórmulas podem ser modificadas da seguinte forma: Eu encontrei de volta o script Mathematica onde eu calculou o corte para vários filtros, incluindo o MA. O resultado foi baseado na aproximação do espectro MA em torno de f0 como uma parábola de acordo com MA (Omega) Sin (OmegaN2) Sin (Omega2) Omega 2piF MA (F) aproximadamente N16F2 (N-N3) pi2. E derivando o cruzamento com 1sqrt de lá. Ndash Massimo Jan 17 16 at 2: 08Exponential Filter Esta página descreve a filtragem exponencial, o filtro mais simples e mais popular. Isso faz parte da seção Filtragem que faz parte de Um guia para detecção de falhas e diagnóstico. Visão geral, constante de tempo e equivalente analógico O filtro mais simples é o filtro exponencial. Ele tem apenas um parâmetro de ajuste (diferente do intervalo de amostra). Ele requer o armazenamento de apenas uma variável - a saída anterior. É um filtro IIR (auto-regressivo) - os efeitos de uma mudança de entrada decai exponencialmente até que os limites das telas ou a aritmética do computador o escondam. Em várias disciplinas, o uso deste filtro também é referido como suavização 8220exponencial8221. Em algumas disciplinas, como a análise de investimento, o filtro exponencial é chamado de 8220Motiva Mínima PonderadaExponencialmente (EWMA), ou apenas 8220Motiva MínimaExponencial8221 (EMA). Isso viola a tradicional terminologia ARMA 8220moving average8221 da análise de séries temporais, uma vez que não há histórico de entrada usado - apenas a entrada atual. É o equivalente em tempo discreto do lag8221 de primeira ordem comumente usado na modelagem analógica de sistemas de controle de tempo contínuo. Em circuitos elétricos, um filtro RC (filtro com um resistor e um capacitor) é um atraso de primeira ordem. Quando se enfatiza a analogia com os circuitos analógicos, o parâmetro de ajuste único é a constante de tempo 8220, geralmente escrita como a letra grega Tau (). De facto, os valores nos tempos de amostra discretos correspondem exactamente ao intervalo de tempo contínuo equivalente com a mesma constante de tempo. A relação entre a implementação digital e a constante de tempo é mostrada nas equações abaixo. Equações do filtro exponencial e inicialização O filtro exponencial é uma combinação ponderada da estimativa anterior (saída) com os dados de entrada mais recentes, com a soma dos pesos iguais a 1 de modo que a saída corresponde à entrada no estado estacionário. Seguindo a notação de filtro já introduzida: y (k) ay (k-1) (1-a) x (k) onde x (k) é a entrada bruta no tempo ky (k) é a saída filtrada no tempo passo ka É uma constante entre 0 e 1, normalmente entre 0,8 e 0,99. (A-1) ou a é às vezes chamado 8220smoothing constante8221. Para sistemas com um passo de tempo fixo T entre amostras, a constante 8220a8221 é calculada e armazenada por conveniência apenas quando o programador de aplicações especifica um novo valor da constante de tempo desejada. Para sistemas com amostragem de dados em intervalos irregulares, a função exponencial acima deve ser usada com cada passo de tempo, onde T é o tempo desde a amostra anterior. A saída do filtro normalmente é inicializada para corresponder à primeira entrada. À medida que a constante de tempo se aproxima de 0, a vai para zero, então não há filtragem 8211 a saída é igual à nova entrada. Como a constante de tempo fica muito grande, um aproxima-se 1, de modo que a nova entrada é quase ignorado 8211 filtragem muito pesado. A equação de filtro acima pode ser rearranjada no seguinte equi - valente preditor-corretor: Esta forma torna mais aparente que a estimativa variável (saída do filtro) é predita como inalterada da estimativa anterior y (k-1) mais um termo de correção baseado No inesperado 8220innovation8221 - a diferença entre a nova entrada x (k) ea previsão y (k-1). Esta forma é também o resultado de derivar o filtro exponencial como um simples caso especial de um filtro de Kalman. Que é a solução ótima para um problema de estimação com um conjunto particular de suposições. Passo resposta Uma maneira de visualizar o funcionamento do filtro exponencial é traçar sua resposta ao longo do tempo para uma entrada passo. Ou seja, começando com a entrada e saída do filtro em 0, o valor de entrada é repentinamente alterado para 1. Os valores resultantes são plotados abaixo: No gráfico acima, o tempo é dividido pela constante de tempo do filtro tau para que você possa mais facilmente prever Os resultados para qualquer período de tempo, para qualquer valor da constante de tempo do filtro. Após um tempo igual à constante de tempo, a saída do filtro aumenta para 63,21 do seu valor final. Após um tempo igual a 2 constantes de tempo, o valor sobe para 86,47 do seu valor final. As saídas após tempos iguais a 3,4 e 5 constantes de tempo são 95,02, 98,17 e 99,33 do valor final, respectivamente. Uma vez que o filtro é linear, isto significa que estas percentagens podem ser utilizadas para qualquer magnitude da mudança de passo, não apenas para o valor de 1 utilizado aqui. Embora a resposta passo em teoria leva um tempo infinito, de um ponto de vista prático, pense no filtro exponencial como 98 a 99 8220 done8221 respondendo após um tempo igual a 4 a 5 constantes de tempo de filtro. Variações no filtro exponencial Existe uma variação do filtro exponencial chamado filtro exponencial não-linear, que pretende filtrar fortemente o ruído dentro de uma determinada amplitude, mas então responder mais rapidamente a alterações maiores. Copyright 2010 - 2013, Greg Stanley Compartilhar esta página:

No comments:

Post a Comment